Jacobi groupoids and generalized Lie bialgebroids
نویسندگان
چکیده
منابع مشابه
Generalized Lie Bialgebroids and Jacobi Structures
The notion of a generalized Lie bialgebroid (a generalization of the notion of a Lie bialgebroid) is introduced in such a way that a Jacobi manifold has associated a canonical generalized Lie bialgebroid. As a kind of converse, we prove that a Jacobi structure can be defined on the base space of a generalized Lie bialgebroid. We also show that it is possible to construct a Lie bialgebroid from ...
متن کاملLie Groupoids as Generalized Atlases
Starting with some motivating examples (classsical atlases for a manifold, space of leaves of a foliation, group orbits), we propose to view a Lie groupoid as a generalized atlas for the “virtual structure” of its orbit space, the equivalence between atlases being here the smooth Morita equivalence. This “structure” keeps memory of the isotropy groups and of the smoothness as well. To take the ...
متن کاملgeometrical categories of generalized lie groups and lie group-groupoids
in this paper we construct the category of coverings of fundamental generalized lie group-groupoid associatedwith a connected generalized lie group. we show that this category is equivalent to the category of coverings of aconnected generalized lie group. in addition, we prove the category of coverings of generalized lie groupgroupoidand the category of actions of this generalized lie group-gro...
متن کاملGeneralized Lie Bialgebras and Jacobi Structures on Lie Groups
We study generalized Lie bialgebroids over a single point, that is, generalized Lie bialgebras. Lie bialgebras are examples of generalized Lie bialgebras. Moreover, we prove that the last ones can be considered as the infinitesimal invariants of Lie groups endowed with a certain type of Jacobi structures. We also propose a method to obtain generalized Lie bialgebras. It is a generalization of t...
متن کاملLie local subgroupoids and their holonomy and monodromy Lie groupoids
The notion of local equivalence relation on a topological space is generalized to that of local subgroupoid. The main result is the construction of the holonomy and monodromy groupoids of certain Lie local subgroupoids, and the formulation of a monodromy principle on the extendability of local Lie morphisms. 2001 Elsevier Science B.V. All rights reserved. AMS classification: 58H05; 22A22; 18F20
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2003
ISSN: 0393-0440
DOI: 10.1016/s0393-0440(03)00050-0